Package: glam 1.0.2

glam: Generalized Additive and Linear Models (GLAM)

Contains methods for fitting Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Generalized regression models are common methods for handling data for which assuming Gaussian-distributed errors is not appropriate. For instance, if the response of interest is binary, count, or proportion data, one can instead model the expectation of the response based on an appropriate data-generating distribution. This package provides methods for fitting GLMs and GAMs under Beta regression, Poisson regression, Gamma regression, and Binomial regression (currently GLM only) settings. Models are fit using local scoring algorithms described in Hastie and Tibshirani (1990) <doi:10.1214/ss/1177013604>.

Authors:Andrew Cooper [aut, cre, cph]

glam_1.0.2.tar.gz
glam_1.0.2.zip(r-4.5)glam_1.0.2.zip(r-4.4)glam_1.0.2.zip(r-4.3)
glam_1.0.2.tgz(r-4.4-any)glam_1.0.2.tgz(r-4.3-any)
glam_1.0.2.tar.gz(r-4.5-noble)glam_1.0.2.tar.gz(r-4.4-noble)
glam_1.0.2.tgz(r-4.4-emscripten)glam_1.0.2.tgz(r-4.3-emscripten)
glam.pdf |glam.html
glam/json (API)
NEWS

# Install 'glam' in R:
install.packages('glam', repos = c('https://andrewdjac.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 2 scripts 148 downloads 1 exports 4 dependencies

Last updated 5 months agofrom:9d00c16b35. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:glam

Dependencies:codetoolsforeachgamiterators

Generalized Linear and Additive Models ('GLAM')

Rendered fromglam.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2024-07-10
Started: 2024-07-10