Package: glam 1.0.2

glam: Generalized Additive and Linear Models (GLAM)

Contains methods for fitting Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Generalized regression models are common methods for handling data for which assuming Gaussian-distributed errors is not appropriate. For instance, if the response of interest is binary, count, or proportion data, one can instead model the expectation of the response based on an appropriate data-generating distribution. This package provides methods for fitting GLMs and GAMs under Beta regression, Poisson regression, Gamma regression, and Binomial regression (currently GLM only) settings. Models are fit using local scoring algorithms described in Hastie and Tibshirani (1990) <doi:10.1214/ss/1177013604>.

Authors:Andrew Cooper [aut, cre, cph]

glam_1.0.2.tar.gz
glam_1.0.2.zip(r-4.5)glam_1.0.2.zip(r-4.4)glam_1.0.2.zip(r-4.3)
glam_1.0.2.tgz(r-4.5-any)glam_1.0.2.tgz(r-4.4-any)glam_1.0.2.tgz(r-4.3-any)
glam_1.0.2.tar.gz(r-4.5-noble)glam_1.0.2.tar.gz(r-4.4-noble)
glam_1.0.2.tgz(r-4.4-emscripten)glam_1.0.2.tgz(r-4.3-emscripten)
glam.pdf |glam.html
glam/json (API)
NEWS

# Install 'glam' in R:
install.packages('glam', repos = c('https://andrewdjac.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 2 scripts 171 downloads 1 exports 4 dependencies

Last updated 9 months agofrom:9d00c16b35. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 08 2025
R-4.5-winOKMar 08 2025
R-4.5-macOKMar 08 2025
R-4.5-linuxOKMar 08 2025
R-4.4-winOKMar 08 2025
R-4.4-macOKMar 08 2025
R-4.4-linuxOKMar 08 2025
R-4.3-winOKMar 08 2025
R-4.3-macOKMar 08 2025

Exports:glam

Dependencies:codetoolsforeachgamiterators

Generalized Linear and Additive Models ('GLAM')

Rendered fromglam.Rmdusingknitr::rmarkdownon Mar 08 2025.

Last update: 2024-07-10
Started: 2024-07-10